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The intimate connection between factorizable S matrices and some vertex 
models in two dimensions (to be reviewed here) is exploited to show that the 
knowledge of the S matrix not only allows us to define a solvable vertex model 
la Zamolodchikov, but often to write down the free energy by inspection. The 
prototype for discussion is Baxter's eight-vertex model generated by Zamo- 
lodchikov's Z 4 S matrix. The method is then applied to a hitherto unsolved 
19-vertex model, based on the isospin-1 S matrix of Zamolidchikov and Fateev, 
and agreement is checked to fourth order in a perturbation series. The possibil- 
ity of molding other problems like the q-state Potts model into this framework is 
considered. 

KEY WORDS: Factorizable S matrices; Baxter model; Yang-Baxter rela- 
tions; Lee-Yang and Suzuki-Fisher theorems; Potts model; Temperley- 
Lieb equivalence. 

1. INTRODUCTION 

In this article I discuss in some detail a problem that was handled rather 
succinctly in a letter. (~) It  concerns the intimate relation between two 
seemingly unrelated problems: the determination of factorizable S matrices 
in 1 + 1 dimensions and the solution of certain vertex models of statistical 
mechanics on a two-dimensional lattice. (I hasten to assure readers familiar 
with either or neither problem that both will be reviewed here.) 
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B + + + + + + + +  
a a b b c c d d 

Fig. 1. The allowed vertices. Vertices related by reversal of all arrows are given the same 
weight. In the S-matrix context these correspond to the processes ~(O/2)+ fl(-| 

v(o/2) + 8(-0/2).  

Before plunging into any details let us understand schematically the 
nature of these problems and their interrelationship, taking as a concrete 
example the Z 4 S matrix (2) of A. B. Zamolodchikov (A. B. Z.) and Baxter's 
eight-vertex model. O) Baxter considers a lattice, on the bonds of which are 
placed arrows pointing up or down or to the right or left. Let us mean by a 
vertex at any site, the state of the arrows on the four bonds attached to it. 
Of the 2 4 = 16 possible vertices, let us allow just the 8 shown in Fig. 1 and 
assign Boltzmann weights a, b, c, and d to vertices 1, 3, 5, and 7 and also to 
2, 4, 6, 8. The sum over all allowed configurations of the lattice defines a 
partition function Z. The partition function per site z = Z |/N2 (on an 
N • N lattice) was found by Baxter, in the limit N---> ce. For a nice review 
of vertex models see Lieb and Wu. (4) 

Zamolodchikov considers the determination of an S matrix for parti- 
cles of charge Q = +_ 1, the latter being conserved modulo 4 (hence the 
name Z4). This he does, not starting with some Lagrangian, but from 
"general" principles which provide functional equations for the S-matrix 
elements. He postulates elasticity and factorizabil i ty  (i.e., the N-body S 
matrix must be a product of N ( N  - 1)/2 two-body S matrices). There are 
eight two-body amplitudes, in one-to-one correspondence with the vertices 
in Fig. 1 if we let the south and west (or north and east) arrows denote the 
values of Q for the incoming (or outgoing) particles. Imposing invariance 
under charge reversal, we are left with four amplitudes which we call S a, 
S b, S~, and S d in obvious notation, i.e., 

+ +  + -  - +  

++ sa o o -] 
s =  - - S a  0 (1.1) 

+ -  0 0 
- + 0 0 S~ S 0 

The problem is to find the S i. One can show that these are meromorphic in 
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O, the relative rapidity (more on this later). A. B. Z. shows that factorizabil- 
ity is self-consistent only if at each 0 

sn[2~/(1 + (iO/Tr)),k] -sn(2~liO/~r,k) 
So:Sb:Sc:S = 

sn(2~/, k) sn(2~/, k) 

: 1 : ksn(2~iO/er, k)sn[2~(1 + iO/~r),k] (1.2) 

where ~/and k are free parameters (corresponding to coupling constants of 
the underlying field theory, whatever it may be) and sn(z, k) are Jacobian 
elliptic functions of argument z and modulus k. (5) Thus only one S;, say 
Sc, needs to be found. The unitarity equation 

S(O)sT(- -  O) = I (1.3) 

and the crossing equation (more on this later) 

Sc(O ) = Sc(irr - O) (1.4) 

provide two functional equations for So(O). A. B. Z. found a unique 
"minimal" solution (with restrictions on its poles and zeros). Many S- 
matrices have been found this way and eventually linked to some underly- 
ing field theory like the sine-Gordon model. (6) 

Now for the connection between the two problems. The first, due to 
Zamolodchikov, is that if one defines an eight-vertex model with weights 
obeying 

a : b : c : d = S  a : S  b : S  C:S  d (1.5) 

then it is solvable in the sense that 

[ T(O,~,k), T(O',7/,k)] = 0 (1.6) 

T being the transfer matrix. This would not surprise readers familiar with 
Baxter's work. But A. B. Z. shows that the result is general(2): any vertex 
model with vertex weights in the same ratio as the elements of any 
factorizable two-body S matrix [as in Eq. (1.5)] is solvable in the sense of 
Eq. (1.6). Besides this result, firmly established in Ref. 2, A. B. Z. also 
noticed another remarkable coincidence in the Z 4 eight-vertex case: if one 
considers the eight-vertex model with weights equal to (and not just 
proportional to) the S, themselves, then z (S)  = I for a range of parameters 
called the principal region or PR (c > a + b + d, all positive). In other 
words, if one takes Baxter's formula for z(a, b, c, d) which has the form (in 
the PR) 

z (a ,b ,e ,d)  = c/f(O,~l,k) 
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one finds that f(| k) is just Sc(| k). Consequently 

z(S~ ,Sb ,Sc ,Sd)  = S~z(S~/S~ ,Sb /Sc ,  1 ,Sd/S~)  

= &z(a/c ,b /c ,  1,d/c) 

Sc 
- z ( a , b , c , d )  

c 

S~ c Sc 
c f f 1 (1.7) 

where I have repeatedly used the fact that (i) if all the weights are 
multiplied by a factor p, z ~ p N 2 z  and z ~ p z ;  (ii) Eq. (1.5) implies that 
a / c  = S a / S  c, b / c  = S b / S  ~, etc. 

The present investigation was performed to answer the following 
questions: 

(i) Is it possible to explain the coincidence pointed out by Zamo- 
lodchikov, i.e., to derive the result z ( S )  = 1 (in the PR)? 

(ii) Is this a general phenomenon, i.e., is z ( S )  = 1 (in the correspond- 
ing PR) for other vertex models defined by other S matrices in the same 
way? 

The answer is affirmative, granted some assumptions. Before going 
into these or the derivation, let us recognize the importance of the result 
z ( S )  = 1: it implies that not only does the knowledge of S allow us to 
define a solvable vertex model as A. B. Z. observed, it also allows us to write 
down the answer at once, in the PR. This is done by referring to the 
equalities leading up to Eq. (1.7): if a, b, c, d, e . . . .  are the vertex weights in 
the same ratio as S-matrix amplitudes Sa, Sb, So, Sd, Se . . . .  etc.; then 

z (a ,b ,c  . . . .  ) =  C---z(S~ S b , s  ~ . . . .  ) 
sc  ' 

_ e _ a _ b ( 1 . 8 )  

Sa & ' ' "  

There is another way to state this result. Consider a vertex model with 
weights r -- {a, b . . . .  ) with a given ratio between two weights (i.e., a given 
19, ~/, k in the eight-vertex case). This is a one-parameter family of weights 
whose overall scale O is free. It is clear that in this family there is a member 

such that 

z(~) = 1 

This is because rescaling t~ rescales z and we can make it 1. In fact 

= r162 (1.9) 
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where to is any member of the family and z (to) the corresponding z; for 

z(~) = z(to/z(to)) = [1/z(to) ]z(to) = 1 (1.10) 

Let us call ~ the normalized weights. For each given ratio (i.e., O, 7/, k), we 
will of course need a different ~, i.e., ~ = ~(O, ~/, k). Clearly knowing ~ is 
knowing z(to) [from Eq. (1.9)]. Now any other way to calculate ~ [other 
than solving for z(to) and using Eq. (1.9)] is in effect another way to solve 
the problem. This is exactly what z(S) = 1 gives us--it  says ~ is just S! 
Thus to find ~, we assemble the weights to into a matrix to~ (where a, fl 
and ~,, 6 label the west-south and north-east bonds of the vertex, see Fig. 
1) and choose the overall scale from the unitarity equation 

to(O)toT(-O) = I (1.11) 

The thrust of our derivation consists of showing that the "1" 'in the 
unitarity equation of the matrix of weights propagates all the way to the 
end and gives the "1" in z(S) = 1 in the PR. (Since z is a piecewise analytic 
function, rescaling the weights by an analytic function can make it unity 
only in some region, here the PR.). This is done by defining a function za 
which equals z in the PR (but not everywhere) and deriving certain 
functional equations for it. These then are used to show z a ~ 1 given some 
analytic properties A1 and A2. A2 states that AB(O), a certain eigenvalue 
of T(O), is zero-free in a strip in the O-plane. In the eight-vertex case some 
progress has been made in this problem by showing that AB (O) is itself the 
partition function of a one-dimensional Ising model in a magnetic field. 
For some special cases the Lee-Yang (s) and Suzuki-Fisher O) theorems can 
be invoked to show that the zeros do not invade this strip. But the problem 
is unfinished. Thus the derivation lacks, at present, the rigor of the Bethe 
ansatz (4) or quantum inverse scattering methods. (1~ It is more akin to the 
works of Straganov, Schultz, Perk or Baxter. (1 t-14) Indeed Baxter (14) solved 
the eight-vertex model (among others) this way, given similar assumptions. 
The present work is still useful because 

(i) it clarifies the relation to the S-matrix problem; 
(ii) it provides functional equations that are valid for other S-matrix- 

based models because they are derived using general principles like unitar- 
ity, positivity of weights, etc.; 

(iii) it proves some of the assumptions made in earlier treat- 
ments.( 70-14) 

In the next section, the Z 4 eight-vertex problems will be discussed 
further and the way paved for Section 3, wherein the result z(S) = 1 (in the 
PR) is derived, given the assumptions A1 and A2. Partial results on the 
proof of A2 follow in Section 4. The generality of the result z(S) = 1 is then 
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tested in Section 5 for the 19-vertex model based on the isospin-1 S matrix 
of Zamolodchikov and Fateev (15) which has the desired features like 
positivity of weights. The test is successful to the fourth order in a 
low-temperature expansion. Some concluding remarks and discussion of 
other models like the Potts model follow in the last section. 

2. REVIEW OF THE BAXTER MODEL AND THE Z 4 S MATRIX 

2,1. Baxter Model 

Consider an N X N lattice on the bonds of which exist arrows which 
can point up or down or to the left or right. Demand that an even number 
of arrows point into each vertex. The eight allowed vertices shown in Fig. l 
are assigned energies q . . . . .  e 8. The partition function is 

8 

where N i is the number of vertices of type i and the sum is over all allowed 
configurations. We also impose toroidal boundary conditions, i.e., periodic- 
ity in both directions. In the symmetric eight-vertex model that we con- 
sider, vertices related by reversal of all arrows are given the same Boltz- 
mann weight. This leaves us with four independent weights--a, b, c, and d, 
associated with vertices 1, 3, 5, and 7 (or 2, 4, 6, 8), respectively. 

In terms of 

c + d a _ b (2.2) 
0)1,2 - 2 ' 0)3'4 - 2 

Fan and Wu (16) have shown that 

Z ( 0 ) l ,  0)2,0)3,0)4) = Z(q0) i , - - i -0 ) j ,  + 0)k, -+ o),) (2.3) 

where (i, j ,  k, I) is any permutation of (1, 2, 3, 4). Thus it suffices to know Z 
in the region 

0)1 > ("02 > 0)3 > 0)4 ) 0 (2.4) 

Baxter evaluated (3) 

z =  lim " "[Z(N2)] '/~2 (2.5) 
N---> oo 

in the principal regime (PR) 

c > a + b + d (all positive) (2.6) 

which corresponds to replacing 0)4 by [~o4[ in Eq. (2.4). 
The central entity in his approach was the transfer matrix T. Consider 
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CZ I at 2 a N  

Fig. 2. Two successive rows of vertical bonds and the intervening row of horizontal bonds. In 
the S-matrix context the figure describes the matrix element Miia ~ for scattering between one 
right mover of rapidity O and N static targets. 

two successive rows of vertical bonds, whose arrow states are labeled 
a = (a l . . . . .  aN) and a ' =  (a~ . . . . .  a ) )  (see Fig. 2) and the intervening 
row of horizontal bonds. The elements of T are 

( .) T~,, = ~ exp - / 3  (2.7) 

where the sum is over allowed horizontal arrow configurations with 
periodic boundary conditions (i = i' in Fig. 2) and n/ is the number of 
vertices of type j .  It is easy to see that 

Z ( N  2) = Tr T N (2.8) 

where Tr is taken in the 2N-dimensional space of vertical arrow states. 
In Baxter's approach, as in all subsequent ones, one asks when 

[ r ( a ,  b, c, d),  r ( . ' , b ' , c ' , d ' ) ]  = 0 

He found that if the ratios of weights are parametrized as follows 

sn[2T/(1 + ( i~) /~r)) ,k]  - sn[ (2~? iO/~r ) , k ]  
a : b : c : d =  : : 

sn(2r/, k) sn(2~/, k) 

: 1 : k s n [ 2 ~ ( i |  + ( i (9 /~r) ) ,k]  (2.9) 

then 

[ = 0 (2.10)  

(I use weights which can be simultaneously all positive, i.e., as in Ref. 3b.) 
In Eq. (2.10), sn(z,k) is the Jacobian elliptic function of argument z 

and modulus k(5); O, 7, and k are free parameters. This parametrization is 
in no way restrictive; to any given ratio of weights, there exists a choice of 
| 7/, and k. (3) The PR corresponds to 

0 < k < l  ( Z l l a )  

| imaginary, 0 < Im O < v (2.1 l b) 

~/imaginary, 0 < Im~ < K ' / 2  (2.1 le) 
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where K' is the complete elliptic integral of modulus k' = (1 - k 2 )  I / 2 .  (For 
k in the above range, sn has a complex period 2iK' and a real period 4K, K 
being the complete elliptic integral of modulus k.) 

Baxter actually used a variable 

v = 7(1 + (2 iO/~))  (2.12) 

We have switched to O in view of things to come. 
From the fact that 

T(a,h ,c ,d , )  = T*(a, b, d, c) (2.13) 

and that c~-~d does not alter ~ or k, (17) it follows that T is normal: 

[ T, T* 1 = 0 (2.14) 

Thus there exists a O-independent basis of eigenvectors IAi) and the 
eigenvalues 

A,(O) = <A,[ T(O)iA,) (2.15) 

enjoy the same analyticity (in O) as the weights. This information was crucial 
to Baxter, whose weights were entire and will be so here when meromorphic 
weights are introduced. 

From Eq. (2.8) we see that 
2 N 

Z ( O , N  2) = ~ Ai(O) N (2.16) 
i = 1  

and 

z(O) = lim [ Z( |  2) ] ' / x 2 ~  lim [AB(|  VN (2.17) 
N---> oo N--+ oo 

where A B is the dominant (in modulus) among the eigenvalues A i of T. 
From now on we reserve the symbol AB(O ) for the eigenvaIue which 

dominates in the PR. Baxter calculated it and obtained the following 
expression for z in the PR. 

c (2.18a) z(a 'b 'c 'd)o .n .k-  Sc (O, , , k  ) 

where 

(2.18b) 
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and 

irrK' y ,  2~riK (zl~)'~.'"c" 

2.2.  T h e  Z 4 S Matr ix  

Consider scattering in 1 + 1 dimensions between particles and anti- 
particles whose charge is conserved modulo 4 so that a process like 
particle + particle ~ antiparticle + antiparticle is allowed. [If ~ is the field 
operator associated with the particle, invariance under ~ ~ UG where U = 
e x p ( 2 ~ r i / N ) ,  corresponds to Z ,  symmetry and charge conservation modulo 
N.] Assume that there exists a conserved tensor T~v which is the integral of 
some local density. (This is equivalent to assuming an infinite family of 
conservation laws. (18~) Consider a process 

a ( p )  + / 3 ( q ) ~ ( r )  + 3 ( l )  + . - .  

where a , /3  . . . .  label charge states and p ,q ,  . . .  label the two-momenta.  
Translation invariance leads to the conservation of the operator P~ = (H, 
P )  (the energy-momentum vector) and the constraint 

p~ + q~ = r ~ + U + �9 �9 �9 (2.19a) 

while conservation of T ~ requires that 

p~p" + q"q" = r~r ~ + l~l ~ + . . .  (2.19b) 

It  is easily verified that in a 2 ~ n process, with n > 2, these equations 
can be satisfied only at an isolated set of points. Analyticity of the S matrix 
then requires that n = 2. (19) In this casep  = r and q = l and the S matrix is 
diagonal in the momenta  and nontrivial in charge space: 

where 
sprl, y3 = 2eo2qo (/ - r l l S ( q  ' - ll)s  (s,u) (2.20) 

s = ( p ,  + q~) (p"  + q " )  (2.21a) 

u = ( p ,  - q , ) ( p "  - q " )  (2.21b) 

are Mandelstam's invariants subject to the relation s + u = 4m 2, m being 
the particle mass. Hereafter we drop the 3 functions and S shall mean S~r~. 
There are eight nonzero elements which we can identify with the vertices in 
Fig. 1 in an obvious way. Imposing invariance under charge reversal, we 
get four amplitudes S a, S b, S C, and S d defined earlier [see Eq. (1.1)]. 
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Now S has the usual decomposition 

S =  I + i T (2.22) 
[s(nm 2 -  s)] 1/2 

where I is the unit matrix in charge space, T is the reaction matrix, and the 
extra factor in front of T is due to rewriting 82(p ~ + q" - r ~ - l ~) in terms 
of 2p~176 I - ql)8(rl  - sl). 

Zamolodchikov chooses to work with the rapidity 0 for reasons that 
will become apparent. Recall that the momentump ~ of a particle of mass m 
can be written as 

p~ = (E, p) = m(cosh O, sinh O) (2.23a) 

so that p~pu = m 2 is identically satisfied. For small values (9 becomes just 
the velocity, v = p / E ,  while in general O = tanhv, as a result of which O 
transforms additively under Lorentz boosts. A function of rapidity differ- 
ences is thus Lorentz invariant and conversely. 

For the two-body process 

a ( p )  + f l ( q ) ~  "y(p) + 8(q) (2.23b) 

let us introduce the C M  rapidities +_ (9/2 as follows: 

a (O/2 )  + f l ( -  0/2)--> "t((9/2) + 8 ( -  0 / 2 )  (2.23c) 

In terms of O, 

and 

s -- 4m2cosh2(O/2) 

u = -4m2sinh2(O/2) 

(2.24a) 

(2.24b) 

&r~ = out(8(-  O/2),  ~,(O/2) I a (O/2) ,  13(- O/2))in (2.25) 

is required to be a function of (0 /2 )  - ( - 0 / 2 )  = O. 
The crossing principle tells us that if the energy and momentum of 

particles a and y are reversed in Eq. (2.23), we get the amplitude for the 
crossed reaction 

7 ( 0 / 2 )  + fl(-O/2)---> 2 ( 0 / 2 )  + 8 ( - 0 / 2 )  

where "7 and R denote antiparticles of y and a. Since crossing corresponds 
[see Eqs. (2.21) and (2.24)] to 

O <--> i~r - 0 (2.26a) 

o r  

s ~-> u (2.26b) 
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we get 

or more explicitly 

(2.27) 

or  

S ( 1 9 ) S r ( -  19) = I (2.31) 

[Recall that i f ( z )  is generally not analytic if f ( z )  is, for the Cauchy-  
Reimann conditions may be written as Of/az* = 0.] 

Given S*( s )=  S(s*) and the optical theorem, we see that S has a 
discontinuity above s = 4m 2 and below s = 0, as we cross the real axis. 
Drawing cuts out to _+ 0% we get the "physical sheet" shown in Fig. 3a. 
This sheet maps into the "physical strip," 0 < I m  (9 < ~r in the 19 plane 
(Fig. 3b). 

The branch points at s = 0 and 4m 2 are eliminated in going to (9. (7) 
[They arise because 19 and - | which carry complex conjugate values of S 
for 19 real, get mapped onto the same value of s = 4m2cosh2(19/2).] Thus S 
is expected to be meromorphie in | unless it has other singularities not 

Sa(irr - 19) = Sb(O ) (2.28a) 

Sc(irr - 19) = Sr (2.28b) 

Sa(i~r - 19) = Sa(O ) (2.28c) 

In the region for physical scattering, 19 real and positive or s real and 
> 4m 2, we have the unitarity equation 

Sy(| = 6ik (2.29) 
J 

From this we may deduce the "optical theorem" for T, which tells us T has 
an imaginary part proportional to the "cross section." Since there is no 
cross section below the elastic threshold s = 4m 2, T is real below threshold 
down to s = 0, where it becomes comple x again because the crossed 
reaction opens up here (u = 4m2). If there is a bound state of mass M, it 
will produce an imaginary part proportional to 6(s - m2). From Eq. (2.22) 
we see that S is then real between s = 0 and s = 4m 2 except at poles. The 
Schwartz reflection principle tells us that S ( s * ) =  S*(s) or in terms of 19, 

S ( -  19") = S*(19) (2.30) 

which makes S real on the Im 19 axis. Using this relation, we may write Eq. 
(2.29) as a relation between analytic functions that can be analytically 
continued for all 19: 

S, j(O)& A - 19) = 8,~ 
J 
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A o 
/ / / / / / /  B v / / / / / / /  
/ / / / / / / / i  v / / / / / / ~  

D I 4mZ C C 

(a) (b) 

E 

A 

Z0 

Fig. 3. The s and t9 planes. The physical sheet goes into the physical strip 0 < Im | < ~. "B" 
is where the amplitudes are real and simultaneously positive. The mapping of several other 
points is also shown. 

manda ted  by  unitarity. One assumes it does not. (Had  there been inelastic- 
ity, there would have been branch  points in s at each threshold that  could 
not  be avoided in ~.)  

In  addit ion to Eqs. (2.28), (2.30), (2.31) we need one more  set of 
equations that will nail down S(| These are called Yang-Baxter equa- 
tions, encountered by Yang  (2~ in the study of the &funct ion interaction 
and by  Baxter in his quest for commut ing  transfer matrices. Their impor-  
tance in relativistic scattering was realized by Karowski,  Thun,  Truong,  and 
Weisz. (21) The intuitive derivation given below is due to Shankar  and 
Witten.(22) 

Consider a three-body collision depicted in Fig. 4a wherein the parti- 
cles collide two at a time in three widely separated points in space-time. 
Here we expect the three-body S matrix to factorize into a p roduc t  of 

! 

k_.x (a) 

\ 
/ 

(b) 

~' B' a '  

~" 

(el 

Fig. 4. (a) A scattering for which we expect factorization since the three two-body collisions 
are widely separated in space-time. (b) A scattering for which we do not expect factorization 
but obtain it, thanks to the symmetry generated by Tll which allows us to change the impact 
parameters. (c) Instead of shifting (b) into (a) we could shift it to (c). The Yang-Baxter 
equations are obtained by equating the amplitudes for the two cases. 
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on-shell two-body S matrices and to be diagonal in the momenta since each 
two-body collision is. But what if the impact parameters were as in Fig. 4b, 
with the particles headed for a collision where three-body forces are 
expected to be important? We shall see that elasticity and factorizability are 
valid even here. Consider the unitary operator U = exp iaT11, where Tll is 
the space-space component of the conserved tensor T~,.,. Its action on a 
wave packet of mean momentum ( P )  = P0 is, by Lorentz invariance, that 
of expiaP 2, where P is the spatial component of the operator P". We can 
show that this operator translates the packet by an amount proportional to 
its mean momentum. (A quick way is to replace one factor P by ( P ) ,  i.e., 
expiap2~exp ia (P)P = expiapoP, which translates by iapo. A more care- 
ful stationary phase analysis gives the translation 2iapo .(22)) Using U, we 
can shift the particles in Fig. 4b relative to one another and get the impact 
parameters of Fig. 4a, without changing the amplitude. This proves elastic- 
ity and factorizability. 

Suppose we moved them around instead to get the configuration in 
Fig. 4c? We must get the same answer, of course, and this imposes the 
constraint 

~ ' r  , , ~ , ,~ ' r '  (O + O')S2y" (O) ~ ~ . . . . .  = So,,B,,(O)Sg,, (0 + O ' ) S ~  (03 

(2.32) 

Zamolodchikov found the solution to these overdeterminate equations 
that are also consistent with crossing and real analyticity. The result, 
amazingly, was that the amplitudes S,. be in the ratio 

S a : S  b : S  c : S d = a : b : c : d  (2.33) 

where a : b : c : d is given in Eq, (2.9)! In the present context, ~/ and k are 
free parameters associated with the underlying field theory (7 - rr, where 
y = irrK'/2~7 plays the role of the coupling constant). One chooses 
0 < k < 1 and 77 to be purely imaginary (to satisfy real analyticity) and 
requires 0 < - i~/< �89 K '  (or ~/> ~r) to keep complex poles off the physical 
strip, for these violate casuality. (My notation differs from Zamolodchi- 
kov's. (2) I have chosen ~ in his Eq. (3.1) to be the purely imaginary 77, set 
his l = k, and lastly relabeled his S, S,, S r, and - S~ as S~, S b, S c, and Sa, 
respectively.) 

The significance of Eq. (2.29) did not escape Zamolodchikov: it 
implied that the S~ could be used as vertex weights to define an eight-vertex 
model with commuting transfer matrices. Of course, the physical region for 
scattering (O real and positive) and the physical region for the statistical 
problem (O imaginary, and 0 < I m  O < ~r) are different. Notice, however, 
that unlike the continuation off-mass shell (which is ambiguous since there is 
only one value of m for which "'experiments" are possible), the continuation of 
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Fig. 5. The space-time lattice defined by the collision between N particles of rapidity 0 / 2  
and N of rapidity--O/2. The toroidally periodic partition function Z is the trace of the S 
matrix for this process. 

the on-shell scattering function, "measurable" on the positive real 19 axis to 
all 19, is unique. 

Indeed, Zamolodchikov succeeded in showing ~5) that any factorizable 
S matrix obeying Eq. (2.32) generates likewise a vertex model with [T(19), 
T(19')] = 0. 

Another way to relate the two problems, which also appear in a more 
general form in Zamolodchikov's more recent publication, ~23) is the follow- 
ing: Consider a collision (Fig. 5) between N right movers of rapidity 19/2 
with N left movers of rapidity - 19/2, in charge states t3 and a respectively. 
Let (/~', a ') be the final state. From Fig. 5 it is apparent that 

Z = T r S  ~ ~ S~w 2N)  (2.34) 
a,/3 

the Tr being taken in the 4N-dimensional internal space of S, the 2N-body 
S matrix. Thus, even though the particles move in a space-time continuum, a 
lattice emerges thanks to elasticity and the conservation laws in each collision. 
This connection between an S-matrix and a statistical problem on a lattice 
is very different from the usual connection ~25) between Euclidean field 
theories and critical statistical systems. While the present connection is 
interesting and serves to establish some not so obvious properties, like 
Baxter's Z-invariance, ~24) it does not tell us how to solve for Z since 
computing the trace of $ , ~ ,  the giant 2N-body S matrix, given the 
elements S i of the two,body S matrix, amounts to solving for Z given the 
matrix of weights. To solve for Z, we must use a trick described in the next 
section. 

Let us continue with the saga of two-body S matrix. Given the ratios 
of S,., we need find just one, say S c. Eliminating the others in the unitarity 
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equation, one finds 

sn2(2n, k) 
Sc(O)Sc( - O) = sn2(2~ ' k) - sn2(2~iO/0r, k) (2.35a) 

We also have the crossing equations 

So(O) = Sc(i~ - O) (2.35b) 

The solution to these equations is not unique, even in the realm of 
meromorphic, real analytic solutions. One can multiply any given S~ by a 
function 0(O) of the same genre obeying 

~ ' (O)~ ' ( -  O) = 1 
(2.36) 

�9 ( o )  = - o )  

If, however, we demand that S c be minimal, i.e., free of poles or zeros 
in the physical strip and be positive on the Im 0 axis, we get �9 ~ 1. To see 
this, note that 

1 _ 1 
~b(O) ~(i~r - O) 

implies O(O) = O(O + 27ri). Given that �9 is zero free in the physical strip 
implies it is pole free for 0 > I m  | > -~r.  On the lines Im O = 0 and 0r 
unitarity and crossing assure us ~ is unimodular. A meromorphic function 
free of poles in a full period is a constant by Liouville's theorem. At O = 0 
we see �9 = 1. Zamolodchikov found that the unique minimal solution, 
obeying all of the above conditions was just the Sc that occurred in Eq. (2.18)! 
This implied, given Eq. (2.18), that if S~ . . . .  , S a were used as weights, 
z = S~/S~ = 1 in the PR! Zamolodchikov concluded his paper with this 
dazzling coincidence and said an explanation ought to be found. The aim 
of this paper is to provide the same, i.e., to derive the result z ( S )  = 1 in the 
PR, to Which we now turn our attention in the next section. It will be seen 
that much of the derivation, based on general principles like unitarity, 
applies to all S-matrix based models. 

3. THE S-MATRIX SOLUTION 

Perhaps it is best to state at the very outset that the derivation of the 
result z(s) = 1 in the PR is based on the following two assumptions. 

Assumption A1. A single eigenvalue A~(O,~l,k) dominates in the PR. 
Because of the conservation of Q rood 4, T will break up into two blocks 
with Q = 0 or 2 (for N even). While Perron's theorem (e6) assures us that 
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each block, being irreducible and positive, has a dominant eigenvalue, it 
does not rule out a cross-over between the two. At low temperatures, 
S c >> S a + S b + S a, the lattice is antiferroelectrically ordered (look at vertex 
c in Fig. 1) and the Q = 0 sector provides the dominant eigenvalue 
A~(|  We assume this is so down to S c = S a + S b + S a. 

Assumption A2. Corresponding to the dominant eigenvalue A~(O, 
~,k), there must be a nondegenerate eigenket with real positive compo- 
nents, (26) which we denote by IAB(~,k)) since the eigenkets are O- 
independent. Let us define for all | the function 

AB(O,~,k ) -- ( A ~ ( n , k ) l T ( O , n , k ) l A s ( n , k ) )  (3.1) 

Clearly A 8 is meromorphic in | with no poles in the strip PS', 0 ~< Im O 
< ~r. (PS' differs slightly from the physical strip PS: 0 < Im 19 < ~r). We 

assume that A 8 @ 0 in PS'. Some progress in proving this assumption is 
reported in Section 3. This constitutes a very interesting problem by itself. 

Consider now a sequence of functions 

z , ( O , N )  = A , ( O , N )  1/N (3.2) 

It  is clearly analytic and bounded for all N, for O in PS' (and ~/and k in the 
PR). Assuming the thermodynamic limit for any dense set of points in the 
PR, Vitali's convergence theorem (27) assures us that 

z~ (O) = lira z B (O, N )  (3.3) 
N--> oo 

exists throughout the PS', and is analytic therein. Further z B (O) v ~ 0 in the 
PS' by Hurwitz's theorem. (27) 

We will now derive two functional equations for z~: 

z B (| = z B (i~r - O) (3.4) 

z~ (O)z~ ( -  o)  = l (3.5) 

~/ and k being fixed everywhere at some value in the PR. 
It  now follows, as in the case of the function q?(19) encountered in Eq. 

(2.37), that 

z B (O) --= 1 (3.6) 

[Recall that Eqs. (3.4) and (3.5) imply zn(O) = zB(| + 2~ri). Crossing tells 
us z B is analytic and nonzero on 0 < Im t9 < ~r, given the same on PS': 
0 < Im 19 < ~r. Inversion gives us the same for 0 > / Im 19/> -~r.  Since z B is 
analytic and bounded in a full period, it is constant. At 19 --- 0, Eq. (3.5) 
tells us z 8 = 1.] Since A~ dominates in the PR, z B = z there, and the result 
z ( S )  = 1 follows in the PR. 

In Ref. 1 I had attempted to derive z ( S )  = 1 without recourse to A2. I 
am now cogniscent of the fact that the arguments presented therein can be 
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invalidated by the peculiarities of the N = m limit. I am obliged to 
Professor Baxter for suggesting the route based on Vitali's theorem. Natu- 
rally, I am responsible for any misrepresentation. 

To prove Eq. (3.4) we recall that (17) in the PR, 

T(a, b, c, d) = T*(a, b, d, c) (3.7) 

Now a~--> b, c~-~ d does not affect T since this amounts to reversal of 
horizontal spins which are summed over anyway. Applying this symmetry 
to Eq. (3.7), we get 

r ( a , b , e , d )  = r*(b ,a ,c ,d )  (3.8) 
Sandwiching this equation between <ABI and lAB), which have real compo- 
nents, we get (for the case a = Sa, b = S b, etc.) 

AB(S a ,S  b ,S  c ,Sd) = A~(S b ,Sa ,S  C ,Sd) (3.9) 

or, in view of the crossing equations (2.28), 

A~(O,N)  = AB(i~r - O,U) (3.10) 

This relation, established on the Im O axis, of course holds for all O. Taking 
the Nth root of the above and letting N--)r  we get Eq. (3.4). It is 
important in all this to know that A B has no zeros [i.e., ze(O, N) is analytic] 
in the vicinity of O = i7r/2, the fixed point of the transformation O ~ i~r - 
O. To see what can otherwise go wrong, consider a model function 

I(~),N) = [ 2 c o s N O ]  ,/N 

where O = O - i~r~2. At every N, f((~, N) = f ( -  O, N). As N---> oc however, 
f(O)--limN__,~f(O, N) is only piecewise analytic: 

f (O)  = f+_ (O) = exp(W O) for Im (~ ~ 0 

and we have only the relation 

f+  (O) = f_  ( -  O) 

between two different functions and not a functional equation characteriz- 
ing a single function. We can of course concentrate instead on either of the 
analytic functions f+  (6~), but these do not obey f+  ( -  (~) = f+ ((~). Instead 

they obey something not true at finite N: f •  ((~)f_+ ( - ~ ) ) =  1. Of course 

Vitali's theorem does not apply here since cosNO has a line of zeros on 
Im(~ = 0. 

In the case of A B, however, A2 together with Vital's theorem tells us 
Z B is a single analytic function in the region considered. More generally if 
we derive many functional relations of this type, with fixed points | 
O 2 . . . . .  etc, and want these all to represent statements about a single 
analytic function, we must be given a connected region D of nonzero 
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thickness containing all these points. Indeed this is what A2 gives for Eqs. 
(3.4) and (3.5). 

Another way to derive Eq. (3.10) is to anticipate the result of Section 4, 
namely, that A B depends on S O and Sb only through some combination 
which is crossing symmetric. 

Yet another way is to use the Fan and Wu identity 

Z ( a a , a b , a c , g d )  = Z ( S b , S a , S c , a d )  

to infer that 

z (O)  = z ( i~  - {9) (3.11) 

which implies Eq. (3.4) since z = z B in the PR. However, implicit in Eq. 
(3.11) is the assumption that z is analytic at | = irr/2, i.e., Z has no zeros 
nearby for all N. 

Now, we turn to Eq. (3.5). Consider a projectile of rapidity O and in 
internal state i that collides with N targets at rest and in internal state a. 
Let (i', a') be the final state. This collision can be represented by Fig. 2 if 
we append to it x and t axes as in Fig. 6. Let us denote by M the 
corresponding (N + 1)-body S matrix (to remind us it is the monodromy 
matrix of Faddeev and Takhtadzhan (1~ Clearly, 

Tr2M = ~ i ' a '  = s (0) Taog( 0 ) ( 3 , 1 2 )  
i i' 

Since M rather than T is the natural entity in S-matrix theory, we 
bring it into the picture by considering the following skewed partition 
functions Z,: the spins are periodic in the vertical direction, but skewed as 
follows in the horizontal direction: i',, the rightmost spin of row n equals 
in+l the leftmost of row n + 1, with i~v+l = il. (See Fig. 6.) Since the final 

Q~N+I = ~1 
�9 i 

IN=i l  

,8 i3 = i2 ,8'~ I t 
�9 �9 ! ~! i 

12 = I I 12 \ .I 
il II x 

Fig. 6. The lattice with skewed boundary conditions. The vertical bonds are periodic, the 
horizontal ones are skewed: the rightmost state in each now equals the leftmost in the next. 



On the Solution of Some Vertex Models 667 

state (i', a') of each row is the initial state for the next 

Z, = TrMN(O) (3.13) 

the trace being taken in the 2 N+ l-dimensional space of M. 
Let us now evaluate Z s column by column using TO(O), the column 

transfer matrix which acts on the horizontal spins, the vertical spins being 
summed over with periodic conditions (PBC) because aN+ 1 = a 1 in Fig. 6. 
It is readily seen that 

TC(a ,b ,c ,d )  = r ( b , a , c , d )  

i.e., 

TO(O) = T( i~  - | (3.14) 

In terms of T we have then 

Z~(O) = Tr[ TN(iw -- O) T(0)] (3.15) 

if we note that (i) the final state [ f l ' )  is related to the initial state [fl)  by a 
cyclic shift (see Fig. 6); (ii) T(0)--= T(O = 0) is a cyclic shift operator, a 
result due to Baxter. (28) [To be precise, we must supplement his result with 
our normalization, Sa(0 ) = So(0 ) = 1; Sb(O ) = Sd(O ) = 0.] Comparing Eqs. 
(3.14) and (3.15), we get for all O, 

T r  MN(O) = Tr[ rN(i~r - -  O) T(0)] (3.16) 

Consider this equation in the PR as N ~  oo. Perron's theorem applies 
to M also and we get, in terms of A,(O), its biggest eigenvalue, 

A~(O)(1 + negligible terms) -- AB(O)(1 + negligible terms) (3.17) 

i.e., as N--~ oo 

where 

and 

= z .  ( 0 )  (3.18) 

z s = lira z s (O ,N )  (3.t9a) 
N - ~  

Zs(|  ) = A B ( O , N )  1/N (3.19b) 

In passing from Eq. (3.16) to Eq. (3.17) I have used the fact that 
AB(O ) = AB(icr -- O) and that 

T(0)[AB) = AB(0)IAB) = 1-lAB) (3.20) 

which follows because A~ is real on the Im O axis, and unimodular at 
O = 0 since the shift operator is unimodular: T(O) N = 1 since N shifts = no 
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shift. There are some subtleties associated with asymptotic degeneracy 
discussed in the Appendix. 

Our motive for introducing z s and proving z s = z~ in the PR is that z,, 
when analytically continued to Im O < 0, obeys 

z,(O)zs(-  O) = 1 (3.21) 

It then follows that ZB(O ) has an analytic continuation z~C(O) that obeys 
the same equation. However, we shall see z B (O) itself is analytic at 19 = 0, 
and hence Eq. (3.5). 

To prove Eq. (3.21) we shall establish that at every N, 

As(19, N )As( - 19, N ) = 1 (3.22) 

Taking the Nth root we get 

z,(19,N).z,(-19,N) = 1 (3.23) 

Upon showing (as we will) that N ~ oe does not produce singularities at the 
reflection (or fixed) point 19 = 0, Eq. (3.21) follows. 

So consider Eq. (3.22). First, what do we mean by the function A s for 
19 not in the PR? (This problem does not arise for A~(19) defined for all 19 
by AB(19 ) = (AB[ T(19)IAB}. ) In the PR, the characteristic equation for M 
has a real nondegenerate root As(19, N). Because it is nondegenerate, it is 
analytic. (29) Given this germ, an analytic function (possibly multivalued) is 
defined for all O by analytic continuation. The claim is that the continua- 
tion down the Im|  axis to Im 19 < 0 obeys Eq. (3.22). The proof is as 
follows. Since S(O) obeys the unitarity equation S(19)Sr(-19) = I, so will 
M: 

M ( 1 9 ) M r ( -  19) = I (3.24) 

a result that is readily checked and also expected in a factorizable theory. 
So M r (  - O) is just M -  1(19). Since M T and M have the same eigenvalues, 
we learn that the eigenvalues of M at 19 =-i119[ are inverses of the 
eigenvalues at | = ilOI. Consequently, there will be a nondegenerate, real, 
smallest eigenvalue Xs(19 ) such that 

As(19)Xs(- 19) = 1 (3.25) 

for 1191 < ~r. If we can show that X s, the smallest eigenvalue for Im19 < 0, is 
just the analytic continuation of A~, the largest for Im 19 > 0, we are done. 
Evidently we can explore the cross-over which takes place at O = 0, by 
first-order perturbation theory in 19. Let 

M(19) = M(0) + 19M 1 + . . .  (3.26) 

Since 19 real corresponds to physical scattering, M(0) is unitary. In fact it is 
a cyclic shift operator on the N + 1 spins (i, a). By standard perturbation 
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theory, the eigenvalues will be (in obvious notation) 

Ai(O ) = Ai(0) + O(A~ llA~ (3.27) 

Clearly IAi(0)[ = l. But we require also that Ai(O) be unimodular for 
0 real. Consequently, the first order correction must be orthogonal to Ai(O) 
in the complex plane, i.e., 

Ai(O ) = a,(0) - ;OaiA~(0) 

--~ A,(0)e-"oa' (to order O) (3.28) 

where A i is some real number. Now Perron's theorem assures us that there 
is a A s > A~ for all i =/= s, in order that the corresponding A s dominate in the 
PR. But for the same reason, if we continue Eq. (3.28) down to Im O < 0 
we see that A s evolves smoothly into the smallest eigenvalue, i.e., 2ts(O ) is 
just the same function As(O ) . 

Our analysis, based on analyticity at O = 0, needs to be justified. Now 
M(O) is of course analytic at O = 0 since it is meromorphic and the poles 
are away from O = 0. However, the eigenvalues can be nonanalytic if they 
are degenerate. At each point of degeneracy O o, the eigenvalues will be 
given by a Pusieux series [Taylor series in (O - O0)l/m] (29) 

Ai(19 ) = ~ Cn(19 -- 190) n/m (3.29) 
n=0 

As we go around 190, m degenerate roots will get permuted among them- 
selves. However, unitarity of M(19) for 19 real precludes such a singularity. 
To see this, note that for t9 real, we can write 

M(O) = e/"(~ (3.30) 

where H(19) is Hermitian. At any real 19 let 

H(19) = H ~  19H1+ - - .  (3.31) 

In general, we expect the eigenvalues to be of the form 

hi(O ) = ~ dn(O - 0o) n/m (3.32) 
n = 0  

However, the requirement that h~(O) be real for 19 - 190 positive and real, 
and also negative and real, tells us that dn= 0 unless n is a multiple of m, 
i.e., hi(O ) has a Taylor series in 19 - | By exponentiation, the same goes 
for A~(O) for all real 19 and in particular 19 = 0. [The above result for H(O), 
called Rellich's theorem, is familiar to students of quantum mechanics in 
restricted form: if H = H ~  OH 1, where H ~ and H ~ are Hermitian, the 
eigenvalues have a perturbative expansion in 19 even if H ~ is degenerate.] 
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So we have Eq. (3.22). Since A,(O) is analytic and nonzero near O = 0, 
we take the Nth root and obtain z s ( O , N ) z s ( - O , N  ) = 1. Zs(O,N ) will be 
analytic at O = 0 for the above reasons, i.e., have a Taylor expansion with a 
nonzero radius of convergence 8(N). But what if 8 ( N ) ~ 0  as N ~  co? This 
may happen because H i defined in Eq. (3.31) will grow in norm with N and 
the expansion may have a zero radius of convergence as N---> m. We do 
not, however, expect this to happen at O = 0. This is because at O = 0, the 
logarithmic derivatives of M(O), i.e., H ~ H l, etc, are local operators, i.e., a 
sum over N sites of two-spin, three-spin, etc. coupling. [This result is well 
known for T but is also true for M thanks to the fact that M(0) is also a 
shift operator.] Consequently, IIHi/N[I will be finite as N---)oc and we 
expect h i (O) /N  to have a Taylor series with a nonzero radius of conver- 
gence even as N ~  oo. But Zs(O,N ) = exp[hi(O)/N ], and so the same goes 
for Zs(O,N ) as N ~  ~ .  Some readers may worry that the nth logarithmic 
derivative, H n, involves n-spin couplings. However, one can show that the 
radius of convergence for h i (O) /N  defined as limn__,~a~ - l /~ ,  a, being the 
nth coefficient, is nonzero once the extensive growth has been neutralized 
by the factor 1 /N .  Similar arguments show that zB(O ) is also analytic at 
0 = 0 .  

This concludes the derivation. For readers who did not follow the 
connection with the S-matrix problem in detail, I add that it is not 
absolutely necessary to do so. The main point is that if the weight matrix 
(called S here and R in Baxter's paper) obeys S ( O ) S T ( - - O ) =  I, then 
M ( O ) M T (  - 0 )  = I follows. (This does not require use of the factorizability 
equation. But S-matrix theory does allow us to anticipate it since a 
factorizable theory unitarized at the two-body level must remain so at all 
levels.) From this we get z , ( O ) z s ( - O ) =  1. Equation (3.16) applied in the 
PR as N ~  oo, then allows us to equate z B to z~ and get Zs(O)ZB(--O ) = 1 
(once z~ is shown to be analytic at the inversion point O = 0). 

4. ON THE ZEROS OF AB(O ) 

Since the seminal work of Lee and Yang (8) we know the importance of 
locating the zeros of the partition function Z in some variable in which it is 
entire for all finite N, such as exp - / ~ H  z in the case of the Ising model in a 
magnetic field H z. Since Z is entire, the only singularities in Z l/N2 arise 
from zeros of Z and hence the interest in the latter. In the present case we 
are interested in the zeros of the eigenvalue A B in the O plane. The 
commutativity of T(O) and T(O') leads to nice analytic properties for A 8 
(same as the weights) and hence the interest in its zeros. Here, however, to 
prove that A 8 (0) --/= 0 in the PS' is to completely solve the problems, given 
the functional equations of Section 3 and A1. 



On the Solution of Some Vertex Models 671 

In this section it will be shown that A s ( O , N  ) itself can be related to 
the partition function of a one-dimensional Ising model. For some range of 
parameters the zeros can be located by the Lee-Yang or Suzuki-Fisher 
theorems and shown to lie outside the PS'. The general problem is, 
however, unsolved and posed to the reader. 

For our discussions it is convenient to work, not with AB(| ) --= As(S  ~, 
Sb, So, Sa) where S, are minimal, but with 

As(O) = A , (a ,b ,  1,d) (4.1) 

Since 

(S  a , S  b , S  c ,Sd)  = Sc . (a ,b ,  1,d) 

and rescaling all weights by a factor S C rescales every matrix element of T 
by S N, 

AB(| ) = Sff(O)S_s(O ) (4.2) 

Since S~ ~ 0 or oo in the PS' (for ~/and k in the PR) A n has these features 
if AB does. Let 7 ~ denote T (a, b, l, d). 

Now ]_As] I/N < oo in the PS' because (a,b, 1,d) is bounded therein, the 
nearest poles being at 

O e = i(~r - "~) 4- m71/2 (4.3a) 

and irr - | where m is an integer and 

irrK' and . ( _  2,riK (4.3b) 
Y -  2~ rl 

In the PR, Z is greater than ~r and PS' is pole free. So the problem is to 
prove that [AB[ > 0 in the PS. 

Here are some properties of Aa that should help in proving AB ~ 0 in 
the PS' (see Fig. 7a). 

Property P l .  AB is doubly periodic with periods 7 ' /2  and 2i7. 

Proof. Under 0--~ 0 + 2i,/, 2~7i| 2~liO/~r + 2iK' and 2iK' is a 
period of a, b, 1, and d. Under O ---> | + ( - ~//2), 2~iO/~r ~ 2~li| - 2K 
and only a and b get negated [sn(z + 2 K ) = - s n ( z ) ] .  A B is, however, 
unaffected since n o + n b = N - n ~ - n  a is even since nr + n a is even to 
ensure horizontally PBC. (Here n i is the number of/- type vertices in a row.) 
Thus we need just examine A s in one full period. �9 

Property P2. Aa--~ S_~ if we reflect on the Im 0 axis or the line 
im (9 = ~r/2. 

Proof. Since IAs) is real, Aa is real on the Im (9 axis and ~ - - >  S_~ 
when we reflect on the ImO axis. P2 then follows using AB((9) = AB(iTr - 



672 Shankar 

0). This property is true for any function (like d or So) real on the Im 0 axis 
and invariant under 0 ~ #r - O. �9 

- -  1 ! Properly P3. In the rectangle bounded by Re O-- -+  ~`/, ImO 
= 7r/2 and ImO = - ( 7  - ~r)/2, AB has (1/2)N zeros and Z -- Z(a,b,  1, 
d) has (1/2)N 2 zeros. 

Proof. Under 0 ~ 0 + i`/ 

(a,b, 1, d)--~ 1 ( - b ,  - a , d ,  1) (4.4) 

since sn(z + K', k) = k -  l sn(z, k). Using 

A~(a, 'b,c,d) -- AB(b,a,d,c  ) = A s ( - b ,  - a , d , c )  

we get 

i 8 ( O  + iT) = d - U ( o ) X . ( O )  (4.5 t 

Now let 0 = O r + i(Tr - T)/2: 

AB(O r + i(~r + 7)/2)  = d-UAB(|  + i(~r - `/)/2) 

= A~(Or  + i(~r - , / ) / 2 )  (4.6) 

using P2. Thus 
- `/) 

f f tB--dN on I m O - -  (4.7a) 
2 

AeoX = �89 NAeo a (4.7b) 

where A+T is the change in phase of the function f over a distance AO r. 
Consider now the closed curve BCDEFGHI and apply the argument 
principle (27) 

1 

where ZT is the number of zeros of the function f, analytic in and on the 
contour C. 

Since Ae and d are real on CDE and have real period (1/2)`/' (so that 
IBC cancels EFG), we get from Eq. (4.7) that 

N 1 . N . ~ A q ~ a = 7  1 T 

since d has a simple zero at 0 = 0 and no others within the contour 
B C . . .  I. 

A similar argument applied to Z, which obeys Z(O + iT) = d-N2Z(O), 
gives the number of zeros to be (1/2)N 2. 

Property P4. On GHI and its reflection on ImO = ~r/2, {d I = 1. 
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Proof On going from GHI  to its reflection, O ~ ( 9  + iy so that 
d ~  d -~. But also d-+ d* (see P2). Note also, for later use that Aq~ a = 2~r as 
we go from G to H to I (argument principle applied to d on GHIBCDEF)  

Proper ty  PS. With n and k fixed, A B is a polynomial in d of the form 
N 

= Y,  v " d " ,  v .  = v.* = > o (4.8) 
n = 0  

Proof Consider a row of the transfer matrix corresponding to the 
final state E = ( +  - + - + �9 �9 �9 ) =  [afe), where afe mean antiferroelectric. 
Let us write the equation T]AB) -= AB]A~) more explicitly: 

: = At3 : (4.9) 

When the indicated row is dotted with the column vector IAB (7, k)), we get 
A e t imes A~ re, where A~ fe = (afelAB). Let us choose ~:BAafe= 1 for conve- 
nience. Now, it is easy to verify that in the elements of the row T~,  the 
weights a and b occur only in the combination ab (more on this later). 
Using Baxter's relation (3b) 

1 _ k s n 2 2 ~ _  c d _  d (recall c - - 1 )  (4.10) 
x 2 ab ab 

we see that at fixed ~/and k, AB = As(d,~l,k). It is evidently a polynomial 
of Nth order. Since x 2 and the components A~ are real and positive, so are 
the coefficients Yn in Eq. (4.8). Finally ,/~ = YN-, follows from Eq. (4.5) 
which may be written as 

AB(1 /d  ) = d-NAB(d  ) (4.1 la) 

since 

d - + l / d  under | 1 7 4  II (4.11b) 

Thus we should really study A B in the d plane. Thanks to Eq. (4.10) we 
need consider just the unit disk [d[ < 1, which corresponds to the rectangle 
B C . . .  I, (see Fig. 7), while the shaded region within corresponds to 
ABCDEF. (If ?]8 v ~ 0 in ABCDEF, A B =/= 0 in the PS' by use of periodicity, 
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(a) (b) 
Fig. 7. (a) Given the periods and symmetries of /~B we need consider just the rectangle 
BCDEFGHI in the | plane. The corresponding part of the PS' is ABCDEF. (b) The same 
regions in the d plane: BCDEFGHI becomes the unit disk [d} < 1, while the shaded region 
corresponds to PS'. 

crossing, etc . . . .  ) As  for the m a p  Fig.  7a---> Fig.  7b, we have  a l r eady  seen 
that  GHI---> }d[ -- 1 with 2xq, d = 2~r, going f rom G to I. Next ,  d is real  
nega t i ve /pos i t i ve  on  A H / A D .  F ina l ly  d = a b / x  2 is real  posi t ive on D C  
because  a = b* here (crossing = ref lect ion on I m O  axis) and  on  CB be-  
cause a = i[a I a n d  b = - ilb { here. 

P r o p e r l y  P6.  A~(d)  may be interpreted as the partition function of a 
one-dimensional Ising model in a magnetic field H z given by d = exp - f i H  z. 

Proof. Cons ide r  the tota l ly  disordered case: A~ ---= 1 in Eq. (4.9), i.e., 
consider  the row sum. Ins t ead  of viewing this as a sum over a (with a' f ixed 
at  c7) let  us view it as a sum over (~-}, the hor izon ta l  spins. These  m a y  be  
chosen  freely with TN+ , = ~'1 i.e., for a given a ' =  ~ a n d  any {~-}, we can  
f ind a value  of a in this eight-vertex model .  In  fact  { T ) and  { - ~-} give the 
same a,  i.e., each e lement  T ~  is a sum of two elements,  due  to {~-} a n d  
{ -~-} .  Let  us call  {I-} - ( +  - + - + - + �9 �9 �9 ) the standard configuration, 
with respect  to which devia t ions  are  made .  To emphas ize  this, let us 
in t roduce  {T'} such tha t  (,r'} = ( +  + + + + + �9 �9 �9 ) in the s t anda rd  config-  
urat ion.  The  cor respond ing  Bo l t zmann  factor  is c N = 1. 

Let  us now flip one  spin, say at  site n = 2. This  s ta te  is {T} 
- - ( + + + - +  . . . .  ) a n d  { T ' } - - ( + - + + + +  - . . ) .  W h a t  is i ts 
Bo l t zmann  weight? Evident ly  if we flip % or  ,r',, we mus t  flip a n_ 1 and  % ,  
since only a pa i r  of arrows can  be f l ipped at  each vertex. U n d e r  this change  
c --> a at  the site n - 1 and  c --~ b at  site n and  so the weight  is c N- 2ab = ab. 
If we flip m spins in a row, we get a factor  ab f rom the ends  and  a fac tor  
d " - ;  f rom the in ter ior  since c---> d under  reversal  of hor izon ta l  arrows. 
Wr i t ing  abd m-2 as x2d m, we see that  we can associa te  the fac tor  d m with m 
f l ipped spins in an  external  magne t ic  field and  the fac tor  x with each 
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nearest-neighbor transition from flip ~ nonflip. Thus the row sum obeys 
the Lee-Yang theorem if x < 1, and the zeros lie on Idl = 1, i.e., outside the 
PS'. The dividing line x = 1 has special significance in the S-matrix 
problem (~, = 27r and there are no poles in the second strip 0 > Im O  > 

- ~r) and in Baxter's solution as the point ~- = 2~ at which the location of 
zeros changes. Indeed for x < 1, i.e., ~- < 22t, Baxter finds the zeros do lie 
very close to [d[ = 1. We have, however, not managed to rederive this result 
yet since we are considering the row sum, unweighted by the components 
A~. If we put them back we get, in general (in contrast to the totally 
disordered case), 

(4.12) 
Since ({~"} I AB) is 

(i) real, positive for all (~-'} 
(ii) translationally invariant (T(0)[Ae) = [As)) 

(iii) reflection invariant (((~-') lAB) = ({ - ~'} lAB) = ( a  lAB) 
we can view it as a physical interaction with properties (ii) and (iii), 
appended to our Ising model. �9 

What about the zeros now? This will be decided by the form of the 
"function" ({~"} [Ae)  expanded in terms of two-spin, four-spin, six-spin, 
etc. couplings. If we can "fit" ((~") I AB) with just ferromagnetic two-body 
interactions (not necessarily nearest neighbor) we can still use the Lee-  
Yang theorem (for x < 1). If not, we must turn to the Suzuki-Fisher 
theorem which tells us that if r-spin terms are present, zeros lie on [d[ = 1 
for a range of parameters that shrinks like 1/ ln  r. If it happens (and I have 
other signals which suggests this may be so for x < 1) that r ~ N, then 
there is no circle theorem as N ~ oe. But there is, however, hope since we 

do not really want a circle theorem, we jus t  want no zeros in the PS'. For  
example at N = 4 an elementary analysis shows that if the zeros are not on 
Id[ = 1 they are in the left-half plane, which is enough since PS' is in the 
right-half plane. Further, even if the exact ((~'} lAB) is not reproducible 
by r-spin terms with r finite even as N ~  oo, it may be well approximated 
by such terms. Since the zeros will depend smoothly on the components 
A~, if an approximation has zeros on [d[ = 1 the exact one will have them 
nearby. The fact that IAe) is also the eigenket of a local operator like 
Hxy z ec dln  T/dO)  at (9 = 0, suggests that a local approximation should be 
possible. Note also that as x ~ 0, AB ~ 1 + d N and the zeros are again on 
I dl = 1, for this totally ordered case. 

But these are all special cases and one must prove AB va 0 on the PS' 
using the above-mentioned properties of lAB) as well as some I have not 



676 Shankar 

listed above but which can likewise be derived from general considerations. 
(Baxter's work (3b) suggests that the zeros obey a circle theorem for all x in 
the variable exp iO. For 0 < x < 1, the radius of the circle grows in such a 

�9 way that it is a circle in d also.) 

5. ANOTHER TEST CASE-THE 19-VERTEX MODEL 

It will be recalled that much of the derivation in Section 3 was based 
on general S-matrix principles (like unitarity) and therefore should apply to 
a wide class of S-matrix based models. I consider the 19-vertex model of 
Zamolodchikov and Fateev (15) to illustrate what features are needed before 
the inversion and crossing relations, Eqs. (3.4), (3.5) can be derived. These 
must of course be supplemented with assumptions A1 and A2 to derive 
z ( s )  -- 1 in the PR. I have not been able to prove the assumptions. I have 
verified however, to fourth order in a perturbation expansion, that z ( s )  

indeed equals 1 in the PR (i.e., 0 < ImO < ~r, other parameters to be 
specified later). 

In this model each bond can be in one of the three states with 
Q = 1, 0, - 1, which we can denote by arrows pointing up or down (or left 
or right) or no arrow at all. Of the total of 34= 81 vertices only 19 are 
allowed and these correspond to absolute charge conservation. The vertex 
weights and S-matrix elements depend on a parameter 7t (which we take to 
be real positive) and the variable a = - i O .  In S-matrix notation, i.e. (see 
Fig. 1), 

(0) = 0 /2)v(0 /2)  I 0/2)  

+ +  
S + +  = S - 

s ;  ~ = t =  

S ~  = r = 

S ~ o -  = a = 

+ -  
S + _ = T =  

S+_ + = R = 

sOO 
O0 -----0----  

shX(  - 

shX(~r + a) 

sh~a shX(~r - a) 

shTt(2~ - a)shX(~" + a) 

sh 2~rX sh X(~" - a) 

sh X(2~" - a)sh X(~ + a) 

- 

- 

sh ~r~ sh 2qr~ 
shh(~" + a)shX(2~" - a) 

sh ~X sh 2~'X - sh ha sh X(~r - a) 

sh X(~" + a)sh h(2~ - a) 

(5.1) 
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Elements not given above are obtained from the following symmetries: 

S ~  - S ~  charge reversal 

-- S ~  parity 

= S~ ~ time reversal (5.2) 

Here are the relevant facts. 
(i) For a real, 0 < a < ~r, all weights are real positive. Hence Perron's 

theorem applies to T and M. Here there are blocks for each Q. In the 
low-temperature region 7t ~ ~ ,  weights o and R dominate, i.e., Q = 0. This 
is assumed to hold down to some ?tmin, probably 0. This defines the PR, 
along with a real, 0 < a < or. 

(ii) Since [T(a),T(a')] = 0  and H =  dlnT(a)/da at a = 0  is 
Hermitian, there exists an a-independent  basis and AB(a ) is meromorphic.  

(iii) Consider a row of T in which Q = 0 for all bonds in the final 
state a ' .  Let the initial state a also be such. The possible vertices are o and t 
(which are crossing symmetric). If we now vary a, staying within the sector 
with Q = 0, it will be seen that besides o and t, the vertices r and a occur 
but only in the crossing symmetric combination ra. Thus Ae (a) = A B (~r - 
a) and Eq. (3.5) follows given A2. 

We can also get this result another way. Since every vertex is accompa- 
nied by one which is related to it by a 90 ~ rotation, Z is invariant under the 
exchange of all vertices related by a 90 ~ rotation (i.e., in the sum Z, each 
configuration of the lattice is accompanied by another obtained by a 90 ~ 
rotation). Now a 90 ~ rotation corresponds to crossing plus parity 

(~y]O/~)_, ~g~[~)~~[~)panty 
'90o (  1/3 75 

Thus in' this model, which is parity invariant, 

z (~)  = z ( ~ -  a) 

Using z = z B in the PR, and assuming z is analytic at a = ~r/2, the result 
follows. 

(iv) The inversion formula (3.5) follows from unitarity, and the 
existence of a dominant  A~, and the locality of d~lnM/d"a at a = 19 
= 0. (15) [This will be true whenever S~8(0)~ cc 6~86r There are many  such 
S matrices. (6) ] 

No attempt is made to prove A1 and A2 here. Assuming these, 
z(s) = 1 follows for 0 < Re a < 7r, a real and ?t > ~min (not precisely 
known). The result z(S)= 1 can be verified in the low-temperature limit 
?t ~ ~ .  Here o and R dominate and equal unity, Z = 3, and z = 1. For  Yt 
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large but finite, we can develop a series in x = e -"x a n d y  = e -x(~-")  for 
0 < a < ~r. I find z ( S )  = 1 to fourth order in the double power series, and 
have run into enough miraculous cancellation to become a believer. 

I t  must be pointed out that unlike in the eight-vertex case (i) there are 
not enough symmetries to map every region into the PR; (ii) due to the 
dearth of parameters, we cannot assume every weight is of the form 
e x p -  fie, where e is fl independent. However, as X--> oe all weights are 
indeed of this form with fl = X. 

6. CONCLUDING REMARKS 

In this paper an at tempt was made to show that the knowledge of a 
factorizable S matrix not only allows us to define a solvable vertex model b 
la Zamolodchikov, but also to solve it at once, the answer being z ( S )  = 1 in 
the PR. [The reader is reminded z ( S )  = 1 does not imply a trivial problem; 
in this parlance z (s) = 1 even for the Baxter model.] We made assumptions 
A1 and A2 and derived two functional equations for z B. These implied 
z a ~- 1. Since z = z a in the PR, Z ( S )  = 1 followed in the PR. 

The work of Section 4 suggests that it may be possible to prove A2, 
concerning the zeros of AB, the eigenvalue that dominates in the PR. We 
saw A~ is itself the partition function of an Ising model, the interaction 
being decided by the ket lAB). It is the latter that prevents us from saying 
anything definite about the zeros except in special cases with complete 
order or disorder. It  is of course possible that there is some general feature 
of IA~) (i.e., a feature like translational invariance that can be known 
without explicitly solving for it) that I have not considered, which will 
prove that the zeros do not lie on PS'. This ! pose as a problem to the 
readers, not just in the eight-vertex case but for all S-matrix based vertex 
models. Besidesfollowing the approach of Section 4, namely, viewing the 
corresponding A B as the partition function of a spin problem in one 
dimension, one can try to use factorization in the following sense. Consider 
the zeros of As, which seems an equally hard problem, but is not, because 
A, = 0---> M -1 does not exist---> S - 1  does not exist. The points where 
de tS  = 0 are instantly located: a 2 = d 2 or b 2 = c 2 [see Eq. (1.1)]. If we can 
locate the zeros of A~ so easily (and further, they do not lie in PS') why not 
consider z s = Als/N which finally equals z B in the PR? The problem is 
that unlike ~kB, A s is not  meromorphic :  [ M ( | 1 7 4  [though 
Tr2M(O)M(O'  ) = Tr2M(O')M(O ) the significance of which eludes me]. If 
we can show that A s dominates in the PS (on Im O = 0 it is analytic and 
unimodular), i.e., is analytic therein, we are done because Zs( |  ) = zs(i~r - 

O) follows from z s = z s assuming z B is analytic at 0 = i~r/2. 
At present the necessity of having to make AI  and A2 renders this 

work in the same league as that of Straganov, Schultz, or Baxter. I t  differs, 
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however, in that the central inversion formula, based on unitarity, is 
universally true for all S-matrix based models and in that some other 
assumptions on analyticity are proven here. 

Instead of starting with a known S matrix and solving the problem it 
defines, we could also take a known problem and try to solve it this way. 
The case in point is the q-state Pott's model, which can be viewed, thanks 
to the Temperley-Lieb equivalence, (3~ as a staggered six-vertex model with 
different weights ~04 and wB on sublattices A and B. At the critical point, 
c0 A = ~0 B, and Baxter solved for the free energy. (31) What about the general 
case? We can take as the basic block a 2 • 2 lattice containing two A and 
two B sites, which repeats simply. (I am obliged to Daniel Fisher for this 
suggestion,) We can view it as an unnormalized S matrix for objects in the 
�89 | 1 representation and try to find the unitarizing factor, i.e., which will 
finally give z(S) = 1. To do this of course one needs the parameter one can 
identify with 19 (or a = -i19), and proof of [T(19), T(19')] = 0, which is 
presently unavailable. 

Meanwhile Jaekel and Maillard (32) have verified (to fifth order in a 
power series) that z satisfies two functional equations in two complex 
variables x and y, They report, however, that the minimal solution to these 
equations (minimal in a sense they define) coincides with the series expan- 
sion for the exact answer only at the critical (self-dual) point. We then have 
the option of trying to redefine minimality or changing variables so that the 
problem essentially involves just one complex variable. (The latter may in 
fact be done in the self-dual case as well as in the antiferromagnetic case 
recently solved by Baxter. (33) Here the equations will take the form of 
unitarity and crossing equations and minimality will have the same mean- 
ing: no poles or zeros in a certain strip.) 
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A P P E N D I X  

Here we reexamine the passage from Eq. (3.16) 

TrMU(O, N)  = Tr[ TU(icr - O) T(O)] (A. l) 
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to Eq. (3.17) 

AN(o, N)(1 + negligible terms) = AN(o, N)(1 + negligible terms) (A.2) 

as N--)oe.  The argument was based on Perron's theorem, which tells us 
that A s and A B dominate the respective traces. Perron's theorem is, 
however, valid only for finite N and it is possible as N---)oc that other 
eigenvalues, A; and A~, asymptotically degenerate in modulus with A s and 
AB emerge. We will see that this can happen here, with A~ = - A s ;  
A' s -- - A  s. For even N, this poses no real problem on the left-hand side, 
whereas in the right-hand side there will be a cancellation between A~.  
(As[T(O)IA~) ~ A~C~ and A~, (A~IT(O)IA~) ~ A~C~ because C'~-- - 
C8. [Note that C~ is just A~ (0).] Thus the leading eigenvalue of T drops 
outI (Incidentally this provides us with an inversion formula for the next 
eigenvalue A~. We cannot, however, go further than that.) 

The origin of this problem and its cure are as follows. Consider very 
low temperatures when S c >> Sa, Sb, or S a. Here the lattice is antiferro- 
electrically (afe) ordered. Imagine a 4 • 4 lattice covered with c type 
vertices. (It might help to have a sketch.) Clearly 

T( |  - + - ) = S 4 I -  + - + )  

r ( o ) l -  + - + )  = + - + - )  

Thus we can form eigenstates 

i_+)= I + - + - ) + - I -  + - + )  

with eigenvalues A~ = S 4, A~ = - S 4 and C~ or C~ = + 1, respectively. 
Unfortunately, the matrix M rejects the ale ordered state. This can be 

seen in two ways: (i) for N = 4 (or any even number) the rightmost 
horizontal bond of row n will not equal the leftmost bond of row n + 1, as 
required to form Ma; (ii) the action of M on an ale ordered state is not 
simple: 

M ( o ) L -  + - + - )  = I -  - + - +) 
M(O)I  + - + -  + > =  I + + -  + - >  

where the first label is just i (the leftmost horizontal bond) and the next 
four are a (see Fig. 2). Thus we cannot make an afe ordered eigenstate of 
M, which cyclically shifts the spins (i, a). 

The cure is simple: consider a lattice with 5 columns and 4 rows (or 
generally N + 1 columns and N rows, N being even). Now we have 

M ( O ) I -  + - + - + ) _ - I + - + - + - )  

etc. and we can form I + ) and I - ) states that are afe ordered and have A s 
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and A's equal to _ Sfl. Equation (1) now becomes 

Tr g 4 ( o ,  5) = Tr Ts(O, 4) 

and Eq. (2) becomes 

( A 4 +  A;4)(1 + "  " ' ) = [ A S "  1 + A ~ ' ( - 1 ) ] [ 1  + . . . ]  

and more generally, as N---> ~ ,  

A f ( O , N  + 1) = AN+I(O,N)  

Taking the N ( N  + 1)th root of both sides we get z~ -- z 8. 
These arguments were made at low temperatures where the scenario is 

simple. As we raise the temperature, other weights will come in, [A~[ and 
[As[ will lie below A s and A a (by Perron's theorem, since M and T now 
have irreducible positive blocks), and only asymptotically approach A s and 
A B. The constants C s and C~ are expected to be the same throughout, 
namely, _+ 1. 

NOTE ADDED IN PROOF 

Recently some asymmetrix 8-vertex models have been solved this way 
and will be reported upon soon. 
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